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Introuction

Since the research project consists of two parts, this f inal report is
also divided into the corresponding two parts. The first part summarizes our
numerical results on the flow of a dust-gas suspension through an oblique
shock wave, and the second part deals with the flow of a dust-gas
suspension having various distributions of the properties of the dust

particles through a normal shock wave.




Part 1

The Flow of a Dust-Gas Suspension

Through an Oblique Shock Wave




Abstract

The equetions governing the flow field which is developed when &
supersonic dusty-gas suspension passes through 8 straight oblique shack
wave were formulated. A computer code for solving the gaverning equalions
was developed and used Lo obtain the solution for & variely of ditferent

initial conditions.

In addition, the dependence of the post-shock suspension properties
on the various physical properties of the dust particles, (namely the
diemeter of the dust particles, their specific heat capacity, their materisl
density end the loading ratio of the dusl in the suspension) was

investigated.

Nomenclature

envelope area of the solid particle = aD2

specific heat capacily of the solid particle

drag coefficient

specific heat capacity at constant pressure of the gaseous phase
specific heat capacity at constant volurne of the gaseo s phace
diameter of the solid particle

arag force

thermal conductivity

[low Mach number

mass of a solid particle

Nusseltl number

a co-ordinate normal Lo the obliqua shock wave

nuraber density of the solid particles

suspension pressure

Prandtl number
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Quy. - rate of heat per unit volume transferred from the gaseaus to the solid
phase

- specific gas constant 1

= Reynolds number

cross section of the solid particle = aD2/4

- temperature

- vyelocity of gaseous phase

- velocity of the solid phase

< c ~wnvwo»X
©
]

- specific heat capacities ratio = Cp/Cy

- ongle of incidence

- flow deflection angle

dynamic viscosity

- spatial density

- material density

- loading ratio of the solid phase in the suspension = ppolpqo

o Q VD T e =<
'

Subscripts
- geseous phase

g
n - normal component

p - solid phase

s =~ tangential component

X - horizontal co-ordinate

y - vertical co-ordinate

0 - flow state ahead of the shock weave
1 - flow stale behind the shock wave

introduction
The interest in the ges-dynemic beheviour of & gas-particle

suspension grew in the past three decedes due to ils application to many
engineering problems. Some typical examples are: metallized propelients of
rockets, jet-type dust collectors and blast waves in dusty etmospheres. In
addition, mixtures with gases heavily laden with particles occur frequently
in industrial processes such as plastics manufacturing, flour milling, coai-
dust conveying, powder metaliurgy and powdered-food processing. General




descriptions of such flows can be found in several books &nd review papers
ISoo (1967), Marble (1970) and Rudinger (1973))

The major differences between the flow fields which are developed
behind 8 normal shock wave in 8 dusty-gas and a pure (dust-free) gas are
illustrated in figures ta and b for the temperatures and the velocities,
respectively. When & steady pure gas encounters a normal shock weve it
experiences a sharp (almost discontinuous) change in its thermodynamic and
kinematic properties. This sudden change is shown in figure | to occur
between (0) and (1). The thickness of this disturbance, lg, is only a few
mean free paths of the gas atoms or molecules (about 6.6 x 10-6 c¢m in
standard conditions). Beyond (1) the gas properties remain constant (solid
lines in figures la and b) provided the gas conditions at (1) are nat
sufficient ta excite the internal degrees of freedom of the gas.

If, however, the gas is laden with solid particles then the suspension
which was originally at o state of thermodynamic and kinematic
equilibrium, ahead of the shock front, is suddenly changed into a non-
equilibrium state, because the solid particles, due to their size compeared
with U, do not experience any noticeable change in their properties upon
moving from (0) to (1). Thus, at (1) the gas has a much higher temperature
than the dust, Ty > > Tp and 8 much lower velocity u < < v . Forgenthaler
(1962) indiceted thal this is true even if the particle diemeter is as small
as 0.1 ym (for shock waves in air at nearly standerd conditions, where the
mean free path is ebout 0.066 pm). Therefore, the particles ere not
influenced by the initial disturbance, and the gas properties at (1) can be
safely assumed to be identica! to those of a pure gas with the same initia)
conditions.

Far downstream of (1), i.e., ot («) in figure 1, the gas and the solid
phases reach a new state of thermodynamic and kinematic equilibrium vie
momentum and energy exchange. Theoretically all shock waves in dusty
gases are infinitely thick, since equilibrium is epprosched asymptotically.
However, it is 8 common praclice Lo essign Lo the shock wave an effective
thickness which is defined by e requirement that the suspension properties
come close to their aquilibrium downstreem values. Il was shown by
Gottlieb & Coskunses (1985) that the suspension equilibrium properties (at
infinity) cen be calculated from the usual normal shock wave relations,
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provided that the usual pure gas perameters y and R (the specific hest
capacities ratio and the specific gas constent) are replaced by effective
values y ahd R which solely depend on the initial conditions of the
suspension.
' Between (1) and () the solid particles are not in equilibrium with
the gas. The flow region between (1) and () is known as the relaxation
2one, for it is enalogous to the relexation 2o0ne in pure gases where the
internal degrees of freedom are excited. The extent of the relexation zone
strongly depends on the momentum and heat lransfer mechanisms which
enable the solid and the gaseous phases to reach 8 new equilibrium state.
The analysis of the relaxation zone was studied by many investigators. The
pioneering works of Carrier (1958), Kriebel (1964) and Rudinger (1964)
verified the existe~.a of this relaxation zone and identified the parameters
affecting it, namely; the solid perticle diameter, D, ils specific hest
capacity, C, its material density, o, 8nd the loading ratio, n. Igra & Ben-Dor
(1980) compared various correlations for the drag coefficient, Cg, and the
heat transfer coefficient, Nu, and pointed out their effect on the extent of
Lhe relaxation zone. In addition they studied the role of thermal radiation
heat transfer between the two phases and showed that it can be neglected
when the incident shock waves Mach number is smaller then five. _

in all the above mentioned works, s well as in many others, the
gaseous phase was assumed to behave as a perfect gas. This assumption
was ralaxed by Ben-Dor & Igra (1982) and Igra & Ben-Dor (1984) who solved
the flow field while accounting for reel gas effects. Dissociating nitrogen
was the gaseous phase in the latter work and ionizing argon in the former.

The assumption that the solid particles ere inert, which was 8lso
adopted in most of the published studies, was relaxed by Elperin, Ben-Dor &
Igra (1986) who solved the flow field of an oxygen-carbon suspension
passing through a normal shock wave, behind which the temperature of the
cerbon perticles reached their ignition temperature and burned out.

The ’assumption of uniform solid particles was relaxed by Elata, Ben~
Dor & Igra (1988) who solved the case of size-distributed solid particles.

in all the above mentioned solutions the flow field weas one-
dimensional and steady. The aim of the present study was to solve the case
of a two-dimensional steady flow. This is tha cese when the shock wave is
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oblique. There are many incidences where tha shock weve is oblique. For
example, one cen mention the shock weve generated by a supersonic vehicle,
the shack wave which is developed at the entrance nozzle of a rocket engine
and the reflected shock waves which arise when an explosion generated
blast wave interacts with man-made structures. in all these cases the
shock wave is oblique and, hence, unlike the previousiy mentioned cases the
resulted flow field behind the shock wave is two-dimensional.

The aim of the present study, therefore, is to solve the flow field
which is developed when 8 supersonic dusty gas suspension passes through a
straight oblique shock wave. ) _

Figure 2 illustrates schematically the problem to be solved. A dust
gas suspension which is in 8 thermal and kinematic equilibnum encounters
an oblique shock wave. The angle of incidence is ¢ (sometimes known as the
wave angle). As mentioned previously, upon the passage of the suspension
through the shack wave, the properties of the gaseous phase assume 8 new
state, known 8s the frozen state, immediately behind the shock front, while
the solid phase passes through the shock wave unaffected. Due to the fact
that the shock wave is ablique, the streamline of the gaseous phese is
deflected by en ongle, By, while the trajectory of dust particles remains
unchanged. Thus, in addition to the differences in the properties of the two
phases which were mentioned previously, here there is also a difference in
the direction of propagation of the two phases. The two phases which ere no
longer in equilibrium, stert exchanging momentum and energy until they
finally reach a new thermal and kinematic equilibrium. Here, Kinematic
equilibrium means that, in addition to equal velocities, the two phases also
reach the same directlion. The flow region inside which the two phases are
in non-equilibrium, i.e., the relaxation zone, is also shown in figure 2.

Theoretical Background
Assumptions

The assumptions upon which the present model is based and their

implications are listed in the following:
1) The gaseous phase behaves as an ideal gas. Thus, the equation of state
of the gas Is P = pgRTg. Note that it Is not assumed here that the gas is




2)

3)

4)

5))

6)

7)

)]

10)

6

celorically ideal. Alternatively, the dependence of bath Cp and Cy on
the gas temperature is accounted for. This hes not been done in
previous studies where both Cp end Cy were assumed to be constant.

All solid particles are rigid, inert small identical spheres uniformly
distributed in the gaseous phase. Thus there is no heat addition or
reduction due to chemical processes between the solid and the gaseous
phases. Furthermore, Re and Nu are based on the particle diameter, D.
The volume of the solid phase in the suspension cen be neglected. Thus
the momentum and energy exchange among the solid particles cen be
ignored. )

Aside from momentum and energy interactions between the gaseous and
the solid phases, the gaseous phase is considered to be a perfect flow,
i.e., the dynamic viscesity, pq, and the thermal conductivity, kg, ore
2ero. This also implies that neither kinemeatic nor thermal boundary
layers develop around the solid particles.

The dynamic viscosity, g, the thermal conductivity, Ky, &na the
specific heat capacity at constant pressure, Cp, of the geseous phase
depend solely on its temperature, Tg.

The solid perticles are too large to experience any change in their
thermodynamic and dynamic properties upon their passaege through the
shock front. In addition they are also large enough not to expenence
Brownian motion. Thus, the partial pressure of the solid phases can be
neglected.

The solid particles are small enough to satisfy the condition B; < 0.1,
where Bj is the Biot number, By = hr/kp (h is the coefficient of

connection heat transfer, r is the radius of the solid perticle, and kp 1s
its thermal conductivity). Thus the temperature within the solid
particles can be assumed L0 be uniform.

The weight of the solid particles and the buoyency forces expenenced
by them ere negligibly small in comparison with the drag forces acting
on them.

The specific heat capacity, C, of the solid particles is constant.

Ahead of the normal shock wave the suspension is 8t o stale of
‘hermodynamic and kinematic equilibrium, i.e.,, ug = vg &6nd Tg; = Tpo,

where u and v are the veloctties of the gas and the solid particles, end




To and Tp are the temperatures of the gaseous and solid phases,
respectively.

11) Basedon the dens:cy ratio of the two phases 1/2500, the virtual mess
which depends on this retio is neglected.

In addition to the above listed assumptions it is essumed that the flow field

under consideration is two-dimensional and steady.

If the entire problem is analyzed in the (s,n)-plane, where the s-oxis
is parallel to. the shack wave front and the n-axis is normal to the shock
wave front, then the problem at hand can be considered as one-dimensional.
Note that the s-component of the velocities of the two phases immedistely
behind the shock front are identical, i.e., uis = vy. For this reason the
relative velocity between the two phases in the s-direction is 2ero, and
therefore there ere no 9rag forces in the s-direction. As a consequence,
there are no changes in the velocily components in the s-direction end they
remain constant in the entire flow field. From symmetrical considerations,
it is obvious that all the properties of the suspension must remain constant
along n=constant lines, i.e., along lines which are parallel to the s-axis.
Therefore, the partial derivative of any of the suspension properties with
respect to s is zero.

Governing Equations

Based on the foregoing discussion and assumptions, the governing
equstions for the problem at hand ore:
- conservation of mass of the gaseous phase:

d
35 (Pgun) = 0 (1)
- conservation of mass of the solid phase:

g .
'_OF'(PPV“) =0 (2)




- conservation of linear momentum of the gaseous phese:

i duy _dP :
Paba ~gn * gn = Fon )

- conservation of 1inear momentum of the solid phase:

dv
Pp¥n "‘dn"n = -Fon (4)

- conservation of energy of the gasecus phase: -
d 1 2
PgUn —dE(Cqu * '70‘.) s QHJ. + FDnVn (5)
- conservation of energy of the solid phase:
d 1 2 .
Pp¥n "'EH(CTp v Vn) = ~Qu.y. - Fonva (6)

where py and pp 8re the spatial densities of the gaseous and solid pheses, uj
and vy, are the velocity compaonents of the gaseous and solid phases in the n-
direction, Tg and Ty ore the temperatures of the gaseous and solid phases, P
is the pressure of the suspension, Cp is the specific heat cepacity al
constant pressure of the gaseous phase, C is the specific heal capacity of
the solid perticles, Quy is the amount of heat transferred per unit volume
from the gaseous phase to the solid phase and Fp, is the drag force per unit
volume applied by the geseous phase on the solid particles.

Thus, if Cp, C, Qu.y and Fpy are expressed in terms of the dependent
variebles namely; pg, pp. Un. ¥n. Tg, Tp Gand P, then the above set of six
conservation equations cantain seven unknowns. The seventh equation which
is required to meke the sbove set of equations solveble, is the equation of
state of the gaseous phase; i.e.,
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in the following, the above mentioned complementary equations are
developed.

The drag force per unit volume can be obtained by multiplying the
dreg force acting on a single solid particle by the number density of the
solid particles.

1
Fon == pg Co (Va-un}va-ualS np (8)

where Cp is the drag coefficient, S ts the projected cross section of the
solid spherical particie (i.e., S = aD2/4, where D is the diameter of the solid
particles), and ny the number density of the solid particles can be calculated
from

1 (9)

where my is the mass of a single solid particle (i.e., mp = onD3/6, where o is
the material density of the solid particles).

The drag coefficient, Cp, is usually expressed as a function of the
Reynolds number, Re, which in tum depends on the slip velacity lvq-upl. For
this reeson, the Re number is very high immediately behind the shock wave
while its magnitude vanishes towards the end of the relaxation zone, where
va = Up, IS opproached. For this reason two different correlations for the
drag coefficient Cp ere used:

For Re < 800

Co =—%;—'(| + 0.15 Re0-687) (108)

and for 80O ¢ Re ¢ 3 x 105

0.42
1442500 Re-1.16

cw%(l +0.15 Re0.687) (10b)

Both of these correlations were taken from Clift, Grace & Weber (1978). The
Reynolds number {s calculated from:
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Re::ﬂm’i‘u—dg .$l|)

where pg, the dynamic viscosity of the gaseous phase, is calculated by the
expression suggested by Mazor, Ben-Dor & Igra (1985) which reads:

0.65

T
pq:pqr(—ﬂt) (12)

where g is the dynamic viscosity of the geseous phase at & reference
tempersture Tqr.

The heat transferred per unit volume from the gaseous phase to the
solid phase can be obtained by multiplying the heat trensferred to a single
particle by the number density of the solid particles, i.e,

QT = AR(T,=TyInp | (13)

where A is the surface area of the solid spherical particle (i.e., A = nD2) and
h the coefficient of heat convection can be calculated from

4

k
n:-[%-‘l (14)

where kg is the thermal conductivity of the gaseous phese and Nu the

Nusselt number is & function of the Reynolds number, Re, and the Prandt!
number, Pr, which is defined as

The correlation for Nu which was used in the present study is teken
{rom Drake (1961). It reads:

Nu = 2 + 0.459 Pr!/3 Rg0.55




As mentioned in assumption (S) the specific heat capacity at constant
pressure, Cp, and the thermal conductivity, kg, depend solely on the
temperature of the gaseous phase, Tq. For this reason the gaseous phase waes
_ identified as air. For air (Holman, 1981, p. 542) in the range
. 300 < Tg < 2500K

L kg =0.0125 + 5509 % 105 T, (16)

and from Yen Wylen & Sonntag (1978) p. 683

T. \" 1.5 T -2 T, \~ 3
Cp=39.06 -512.79 (_L‘ 00) + 1072.7 ("‘"L' 00) - 8204 (_—L' 00)

this condition is good for 300 < Tg ¢ 3500 K.

Numerical Solution

Now we are at the stage where the gaverning equations sre well
defined, i.e., the number of independent variables is equal to the number of
equations and all the non-dependent variables con be expressed in terms of
the dependent variables and other known parameters.

As can be seen, the governing equations of the problem at hand
consist of seven non-linear differential equations which must be solved
simultaneously in order to obtain the spatial distribution of the fiow
properties. _

Numerous computer code packages, capable of numerically solving
non-linear differential equations, ere availeble, e.g., the IMSL (International
Mathematical and Statisticel Libreries). This packege contains three
different computer codes for solving 8 given set of differential equations
provided the initial conditions are known. (As will be shown subsequently,
the initial conditions in the case at hand are indeed known.) The most
accurate code oul of these three codes is DREBS. It is based on the
extrapolation method, and {s superior when very high accurecy is required
and when the calculation of the derivatives is notl expensive.

Fortunately, \1e relative simplicity of the governing equations of the
problem at hend, enables one to rewrite them in & form where the

J__._.-_-——




12

derivatives of the dependent variables are isolated, and hence cen be
calculated very quickly and cheaply (computer-wise). The rewritten set of
the governing equations can be changed to the following form:

. 3
. Qu.r.+Fov - ‘—Fz%-u—
US-RTe (17)
. dl’l L{ R ul
o PYCe = W7 - rr,
- Ty
g 0" PMR = 48)
dn u - RTg
u
P dly _ _Tq _du
dn “’9?( an - dn) (19)
dpg pg du
dn°" u dn (20)
dTp Qn1
an ChpY (21)
v ___fo
T (22)
dpp pp Qv ' '
dn ~ v dn (23)

The Initial Conditions

As mentioned earlier, the problem 8t hend is such that the initisl
conditions, i.e., the velues of the dependent varables al x= 0 [ot state (1) in
figure 1] can be easily calculated.

Based on the fact that the thickness of the shock wave front is orders
of magnitude smaller than the diemeler of the solid perticles, it is s
common practice to assume that:
1. The gaseous phase expertences the well known °frozen® change upon its

passage through the shock wave.
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2. The salid phase remains unaffected as it passes through the shock wave.

The above assumptions imply that while the properties of the solid
phase immeiliatelg behind the shock wave front are identical to xhose ai.2ad
of 1L, the properties of the gaseous phase cen be celculated using the well
known Rankine-Huganiot relations which relate the gas properties in botn
sides of the shock wave. More specifically; ’

I 60w ] | |
_—0
Py =Pog[ 3 | ) (24)
! (1) My +2
l' .
Pi =Po[—;;"' (2 y n‘z) Yy t)] (25)
()2 )
Ty, = Tg > (26)
U (1) 12
2(r-1) 0
42 -
Hy = (27)
A,
yt ©
u|=H|VyRTg| (28) -

where subscripts “0° and “1° denote the flow states immediately ahead and
behind the shock wave. M is the Mach number of the gaseous phase, i.e.,
M = u/a [a, the local speed of sound, is simply calculated from & = (y R T)1/2).
Note that when Mg - 1, i.e., when the shock wave degenerates Lo &
Mach wave, then there is no change in the properties of the gaseous phase 8s
it passes through the shock wave.
Since the model at hand assumes thet the gaseous phase behaves 6s a
perfect gas the upper value of Mg which can be used is limited, since 8s
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Mg = « Ty = c0. In the case of a diatomic gas, such as oxygen (02), nitrogen
- (N2), etc, Mp = 6 is usuelly taken as the upper limit for which the
assumption of 8 perfect gas behaviour is valid. For monatomic gases such as
helium (He), neon (Ne), argon (Ar), etc., the upper limit of Mg is even higher.
Beyond these limiting vaiues, reai gas effects must be accounted for. The
ways of treeting such cases are discussed by Ben-Dor and Igra (1982) and
Igra and Ben-Dar (1984).

Complementary Equations :
Once the set of the governing equetions is solved, the velocity
vectors of each of the two phases can be calculated from:

F=upfeuss (29a)
Vavphevss (29b)

The absolute velocities of the twa phase are therefore:

ol = (u: . uf> v (30a)
Wi = (v2 + ¥2) 122 - (300)

The deflection of the gaseous phase stresmline, 8, from its onginal
direction can be calculated from |

Un
- - " nas——
By =¢ - ten~! =7 (318)
Similerly, the deflection of the dusty phase streamline, 8p, is

szo-lan“-%’: (310)
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Obviously, when the suspension reaches a new equilibrium state al the end

of the relaxation zone the flow directions of the two phases become perallel

and hence 89, = 6p . |

The velocity components of the gaseous and the dusty phases in the
(x.y)-coordinate system shown in Figure | can be calculated from:

Uy = Up SINg + Ug COSH (32a)

Uy = -Up COS§ + Ug Sing (32b)
and similarly for the soiid phase:

Vx = ¥p SiNg + Vs COSY (33a)

Vy = =Vp COSY * Vs Sing (330)

Numerical Results

As mentioned eerlier, the problem at hand can be treated as one-
dimensional by solving it in the (s,n)-plane. For this reason, the flow
profiles shown in Igra and Ben-Dor (1980), for example, are all applicable
for the case of oblique shock waves, provided the flow Mach number Mg is
replaced by Mo sing ond the x-8xis is replaced by the n-axis. Note that if the
engle of incidence is set to ¢ = 900, then the oblique shack wave becomes
norma) to the oncoming flow, and the general case of an oblique shock wave
degenerates to the well known one-~dimensional normal shock wave case.

Since the chenge of the flow properties in 8 direction normal to the
oblique shock wave front as well as the dependence of these properties on
the physical properties of the dust particles cen be deduced from Igre and
Ben-Dor (1980), in the following only resulls which are unique to the fact
thatl the shock wave is oblique ere presented.

The Gas Deflection - 84

As mentioned earlier, the direction of the streamline of the gaseous
phese changes continuously from fts “frezen” direction to its “equilibrium”
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direction. In the following, the dependence of the {low deflection angle, 8;.
on the physicsal properties of the dust is discussed.

The dependence of the flow deflection, 8¢, on the dust 1gading ratio,
n. is illustrated in figure 3, for Mg = 3 and ¢ = 300. The dust physical
paremeters are D = 100pm, C = 1000J/(KgmK), o = 1500Kgm/m3.

As can be seen the frozen velue of By, i.e., 85 at n = 0 is identica) for
all the cases. However, the larger the loading ratio is, the greater the
equilibrium flow deflection becomes. The dashed lines are the vslues
calculated by the equivalent gas concept presented in the introduction,
which should be reached at the end of the relaxation 2o0ne.

It is also evioent from figure 3 that the larger the loading ratio is,
the shorter the relaxation length becomes. while forn = 0.1 it takes about
8m for the gaseous phase to reach the equilibrium deflection angle, only 3m
are required whenn = 2.

The deflection angle et the end of the relaxation 2one, a.,éq, as 8

function of the dust loading ratio, ), is shown in a different way in figure 4
for Mg =4, ¢ = 609, D = 100um, C = 1000J/(KgmK) and ¢ = 1500Kgm/m3. '
The fact that the equilibrium deflection angle increeses with
increasing loading ratios is clearly seen in figure 4. However, it is evident
that as n increases the rate aof increase of the equilibrium deflection angle
decreases and it seems that there is an upper limit on Bg 8s n &ssumes

very high velues. Lo

The dependence of tha deﬂectlon angle, By, on the diameter of the
solid particles is shown in figure 5. Agein Mg = 3 ond ¢ = 300. The dust
properties are n = 0.5, C = 1000J/(Kgm K) 6nd ¢ = 1500Kgm/m3,

Since the loading ratio, j, and the specific heat capacity of the dust
particles, C, are the same for the cases, the equilibrium velues 6t the end of
the relaxation zone are identical. However, it is evident from figure 5 that
the smealler the dieameter of the solid particle is, the shorter the relaxation

length becomes.
The dependence of ths deflection angle, 8y, on the spacmc heat

coepecity of the solid particles, C, for Mg = 3 ond ¢ = 300 is shown in figure
6. The properties of the solid phase aren = 0.5, D = 100ym &nd

o = 1500Kgm/m3. It is evident from figure 6 thal higher values of the
specific heel cepecities resull in larger deflections at the end of the
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relaxation zone. The length of the relaxation zone is not seen to strongly
depend on the specific heat capacity.

The dependence of the deflection angle, 8g, on the material density of
the solid particles for Mg = 3 and ¢ = 300 is shown in figure 7. The dust
properties are n = 0.5, D = 100pm, C = 1000J/(Kgm K). Agein, since n and C
are identical for all the cases, the equilibnum velues approached towards
the end of the relaxation zone are the same for all the calculated cases. Il 1S
clearly seen from figure 7 that the smaller the metenal density is, the
shorter the relaxation zone becomes. While it is sbout 4m for
o = 1000Kgm/m3 it increases to about 10m when o is increased to
2500Kgm/m3. '

The gas and the solid particle paths is shown in figure 8 for Mg = 3,
¢ = 600, 3= 1.0,D = 100gm, C = 1000J/(Kgm K) &nd o = 1500Kgm/m3. The
difference between the trajectories is clearly evident. While the gas
paerticles are deflected immediately upon their passage through the shock
wave (n=0), the salid particles do nol change their original direction.
However, behind the shock front the streamlines of the two phases approach
6 parallel direction. The results shown in figure 8 indicate thal it is
impossible ta shape a wedge in 8 supersonic flow of 8 dusty gas, in such a
way that it will generate a straighl oblique shock wave. This 1s due to the
fact that a straight oblique shock weave in & dusty gas resulls in two
ditferent particle trajectories, and no wedge ceén satisfy these *wo profiles.
However, \f the wedge surface is sticky, i.e., if it caen be assumed thst when
a sohid particle hits the surface, it sticks to it, then & wedge having a
profile identical to that of the gas particle path might generate & straight
oblique shock wave. It should be noted, however, that in the case of & sticky
wedge surface, solid particles are drawn away from the suspension snd
hence their loading retio n could be affected.

The dependence of the equilibrium deflection angle, quq on the flow

Mech number, Mg, is shown in figure 9 for ¢ = 600, = 1, D = 200pm,

C = 1000J/(Kgm K) 8nd & = 1500Kgm/m3. 1t is evident from tmis figure that
the equilibrium deflection engle increases as the flow Mach number
increases. However, as the flow Mach number reaches high values, the
equilibriurm deflection angle 1s seen Lo approach an upper limit.
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It is a common practice to use shock polars to study oblique shock
waves. Thus, in the following, shock polers in dusty gas suspension are
presented. . ¥

The (P,8g)-polar for the case Mg = 2.5, D = 100pm, C = 1000 J/(Kgm
K), 6 = 1500Kgm/r3 and verious values of n are shown in figure 10. The
(P,Bg)-polar in this case represents the conditions st the end of the
relexation zone, i.e., P = Peq 8nd 84 = %q' As can be seen the equilibrium

pressure, Peq, becomes higher when n is increased. In addition, the maximum

deflection angle, known os the detachment angle, is also seen to increase

with increasing n. While for a dust-free (pure) gas (i.e, n = 0) (qu)mox is

about 290, it reaches a value of about 560 when the leading ratio is n = 2.
A typical (9, 8g)-polar is shown in figure 11 for the same conditions
of figure t0. Here again 6g = e%q. It is evident from this figure that ir 8

certain deflection is required, say 200, then as the loading ratio increases
the angle of incidence, ¢, which is needed to achieve the required deflection,
decreases.

Conclusions

The flow field developed when & supersoniC Qusty ga&s suspension
passes through a straight oblique shock wave has been investigated.

The investigation included & formulation of the governing equétions of
the flow field at hand and a numerical investigation of the dependence of
the post shock suspension properties on the various physicel properties ol
the solid particles.
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Part 2

The Flow of a Dust-Gas Suspension with Dust
Having Various Distributions of its Physical Properties

Through a Normal Shock Wave.




Abstract o

The effect of distributions of non-uniformities in the diameter, heat
capacity and material density of small spherical particles on the properties
of a dust-gas suspension passing through a normal stationary shock wave Is
studied numerically. : .

[t was found that the gas temperature is practically independent of
the size distribution of the dust particles. The suspension pressure,
however, is very sensitive to the size distribution. It nses very sharply
when the suspension contains mainly small particles.

A distribution in the specific heat capacity of the solid particles
resuits in a minor effect on the velocities and the pressure, and &
pronounced effect on the temperature of the solid particles.

A distribution in the material density of the solid particles affects
both the velocities and the temperatures of the solid and gaseous phases.

introducticn

The interest in the gas-dynamic behaviour of a gas-particle
suspension grew in the past three decades due to its application in many
engineering problems. Some typical examples are: metalized propeliants of
rockets, jet-type dust collectors and blast waves in dusty atmospheres. In
addition, mixtures with gases heavily laden with particles occur frequently
in industrial processes such as plastics manufacturing, flour milling, coal-
dust conveying, powder metallurgy and powdered-food processing. General
descriptions of such flows can be found in'several books and review papers
[Soo (1867), Marble (1970) and Rudinger (1973)]

The major differences between the flow fields which are developed
behind s normal shock wave in a dusty-gas and a pure (dust-free) gas are
illustrated in figures la and b for the temperatures and the velocities,

—
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respectively. When a steady pure gas encounters a normal shock wave it
experiences a sharp (almost discontinuous) change in its thermodynamic and
kinematic properties. This sudden change is shown in figure 1 to occur
between (0) and (1). The thickness of this disturbance, l¢, is only & few
mean free paths of the gas atoms or molecules. Beyond (1) the gas
properties remain constant (solid lines in figures 1a and b) provided the ges

. conditions at (1) are not sufficient to excite the internal degrees of
freedom of the gas. : '

If, however, the gas is laden with solid particles then the suspension
which was originally at a state of thermodynamic and Kkinematic
equilibrium, ahead of the shock front, is suddenly changed into a non-
equilibrium state, because the solid particles, due to their size compéarea
with l;, do not experience any noticeable change in their properties upon
moving from (0) to (1). Thus, at (1) the gas has a much higher temperature
than the dust, Tg > > Tp, and 8 much lower velocity, u < < v (u is the gas
velocity and v is the velocity of the solid particles). Morgenthaler (1962)
indicated that this is true even if the particle diameter is as small as 0.1
pm (for shock waves in air at nearly standard conditions, where the mean
free path is about 0.066 ym). Therefore, the particles are not influenced by
the initial disturbance, and the gas properties at (1) can be safely assumed
to be identical to those of a pure gas with the same initial conditions.

Far downstream of (1), i.e., at (o) in figure |, the gas and the solid
phases reach 8 new state of thermodynamic and kinematic equilibriurn vie
momentum &nd energy exchange. Theoretically all shock waves in dusty
gases are infinitely thick, since equilibrium is approached asymptotically.
However, it is a common practice to assign to the shock wave an effective
thickness which is defined by a requirement that the suspension properties
come close to their equilibrium downstream values. It was shown by
Gottlieb & Coskunses (1985) that the suspension equilibrium properties (at
infinity) cen be calculated from the usual normal shock wave relations,
provided that the usual pure gas parameters y and R (the specific heat
capacities ratio and the specific gas constant) are replaced by effective
values y and R which solely depend on the initial conditions of the
suspension. This effective thickness is known in the literature &S the
relexation zone, for it is analogous to the relaxation zone in pure g&ses
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where the internal degrees of freedom are excited. The extent of the
relaxation zone strongly depends on the momentum and heat trensfer
mechanisms which enable the solid and the gaseous phases to reach a new
equilibriumn state. The analysis of the relaxation zone was studied by many
investigators. The pioneering works of Carrier (1958), Kriebel (1964) and
Rudinger (1954) verified the existence of this relaxation zone and identified
the parameters affecting it, namely; the solid particle diameter, D, its heat
capacity, C, its material density, o, and the loading ratio, n. Igra & Ben-Dor
(1980) compared various correlations for the drag coefficient, Cp, and the
heat transfer coefficient, Nu, and pointed out their effect on the extent of
the relaxation zone. [n addition they studied the role of thermal radiation
heat transfer between the two phases and showed that it can be neglected
when the incident shock wave Mach number is smaller than five.

In all the above mentioned works, as well &s in many others, the
gaseous phase was assumed to behave as a perfect gas. This assumption
was recently relaxed by Ben-Dor & lgra (1982) and Igra & Ben-Dor (1984)
who solved the flow field while accounting for real gas effects.
Dissociating nitrogen was the gaseous phase in the latter work and ionizing
argon in the former.

The assumption that the solid particles are inert, which was also
adopted in most of the published studies, was also relaxed by Elperin, Ben-
Dor & Igra (1986) who solved the flow field of an oxygen-carbon suspension
passing through a normal shock wave, behind which the carbon particles
reached their ignition temperature and burned out.

In the present study, another commonly used assumption concerning
the solid phase is relaxed. It has been 8 common practice to assume that
the solid phase consists of spherical perticles of identical diameter, D,
identical material density, o, and heat capacity, C. In reality, however, this
is not the case, for the particles comprising the solid phase do not have, in
general, a uniform size even though they might have the same physical
properties, i.e, o and C. Furthermore, there could be cases in which the
- suspension consists of different solid materials, i.e,, o and C.

The purpose of this study is to numerically investigate the influence
of the above mentioned solid phase non-uniformities on the fiow field which
is developed behind a normal shock wave.




——-

4

In the following, the basic assumptions upon which the present model

is based are given. The assumptions are followed by the governing equations
and the numerical resuits arising from their solution.

Theoretical Backqround

1)

2)

3)

4)

S)

6)

Assumptions

The assumptions upon which the present model is based and their

implications are listed in the following:

The gaseous phase behaves as an ideal gas. Thus, the equation of state
of the gas is P = pgRTq. Note that it is not assumed here that the gas is
calorically ideal. Alternatively, the dependence of both Cp &nd C, on
the gas temperature is accountéd for. This has not been done in
previous studies where both Cp and C, were assumed to be constant.

All solid particles are rigid, chemically inert small spheres unitormly
distributed in the gaseous phase. Thus there is no heat addition or
reduction due to chemical processes between the solid end the gaseous
phases. Furthermore, Re and Nu are based on the particle diameter, O.
The volume of the solid phase in the suspension can be neglected. Thus
the morentum and energy exchange between the solid particles can be
ignored.

Aside from momentum and energy interactions between the gaseous and
the solid phases, the gaseous phase is considered to be & perfect fluid,
i.e., no other viscous or conduction effects are considered.

The solid particles are too large to experience any change in their
thermodynamic and dynamic properties upon their passage through the
shack front. In addition they are also large enough not to experience

Brownian motion. Thus, the partial pressure of the solid phase can be
neglected.

The solid particles are small enough to satisfy the condition B, < 0 1,
where B; is the Biot number, B; = hr/kp (h is the coefficient of heat
trensfer, r is the radius of the perticle, end kp is its thermal

conductivity). Thus the temperature within the solid particles can be
assurned to be uniform.
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7) The weight of the solid particles and the buoyancy forces experienced
by them are negligibly small in comparison with the drag forces acting
on them.

8) The heat capacity, C, of the solid particles is constant.

9) Ahead of the normal shock wave the suspension is at a state of
thermodynamic and ‘dynamic equilibrium, i.e., ug = vg and Tqy = Tp,
where u and v are the velocities of the gas and the solid particles, &nd
Tq and Tp are the temperatures of the gas and solid particles,
respectively. :

In addition to the above listed assumptions it is assumed that the flow field

under consideration is one-dimensional and steady.

Governing Equations

Prior to listing the governing equations it should be mentioned that
the considered suspension is compased of n + | phases. One phase is the
gaseous phase. The remaining n phases are all solid phases. Each of the n
solid phases consists of identical particles. However, each one of the n
solid phases differ from all the other solid phases in, at least, one of the
following properties; the dismeter of the solid particle, D, its material
density, o, or its heat capacity, C.

Based on the foregoing a&ssumptions the govermng equations
describing the problem &t hand are:

- continuity of the gaseous phase,

—(pqu) = 0 (1)

- continuity of the i-th solid phase;

d ,
5 Ppi Vi) = 0 i=1ton (2)
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- conservation of momentum of the gaseous phase;
d n
3% (Pgu? + P) = ?Fm (3)
- conservation of momentum of the i-th solid phase;
d 2
Tax (et ¥ ) = "o @

- conservation of energy of the gaseous phase;

d n n
pgu —g [CpTg + 1/2 u2] =30y + TFpivi  (S)
1 1

- conservation of energy of the i-th splid phase;
d 2
Ppi Vi Tgx [Ci Tpi + 1/2 Vl.] = ~Qp - Fpi vi (6)

- equation of state of the gaseous phase;
P = pgRTg (7)

inthe above equations pg, u, Tg and P are the density, velocity, temperature
and pressure of the gaseous phase, respectively, ppi, Vi and Tpi are the
spatial density, velocity and temperature of the i-th solid phase,
respectively. Note that the material density of the solid particles is gj
which can be related to the spatial density ppi via the relation ppi = nj Vpi oj
where nj is the number density of the i-th solid particle and Vpj is the
volume of & single i-th solid particle. {t should also be noted that according
to assumption S the partial pressures of all the solid phases are zero. For
this reason P is not only the pressure of the the gaseous phase, but the
pressure of the suspension as well. Cp and R are the specific heat capacity
at constant pressure and the specific gas constant of the gaseous phase and
C; is the heat capacity of the particles of the i-th solid phase. Fp, is the
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drag force per unit volume exerted by the gaseous phase on the particles of
the i-th solid phase and Qp; is the heat transferred per unit volume from the
particles of the i-th solid phase to the gaseous phase.

The drag force Fp; can be calculated from:

Fpi = 3/4 pgppi (vi = u) | vy - u] Co; / {Dj oi) (8)

>

where Dj is the diameter of the solid particle, oj is their material density,
and Cp; the drag coefficient is given by

Co; = 0.48+ 28 Re;-0.85 (9)

The slip Re number for the i-th solid phase is given by

lvi - u |Dj
R = 3 ‘ (10)
#q |

where the dynamic viscosity, pg, depends on the gas temperature, Ty.
The transferred heat, Qp;, can be calculated from:

Qi = 6hi ppi (Tpi - Tg) /7 (Dj o4) (1)
yhere h;, the coefficient of convection heat transfer can be obtained from

kqMuj
o= g (12)

Muj is the Nusselt number of the i-th solid phase. It can be obtained from

Nuj = 2 +0.459 Pr0.33 Re;0.55 (13)

In the last expression Pris the Prandt) number;

c
Pr:—"—i;ﬁ (14)

where Kq (also in 12) is the thermal conductivity of the gaseous phase.




The above set of guvernii.g equations consists of 4 + 3n equations
(conservation of mass, momentum and energy for the gaseous phase,
equation of state of the gaseous phase and conservation of mass, momentum
and energy for each of the n solid particles). The number of the unknowns in
the above set of equations is 8lso 4+3n (pg, u, Tg and P for the gaseous phase
and ppj, ¥j and-Tpj for each of the n solid phases). Thus the above set of
governing equations is solvable in principle.

Nurnerical Approach

Computer Code

There are many computational packages capable of numerically
soiving differential equations. The one chosen for solving the differential
equations governing the problem at hand is the IMSL (International
Mathematical & Statistical Libraries) backage suited to operate on a CDC
Cyber 840 computer. The IMSL package contains three computer codes ror
solving differential equations with given initial conditions; they are:

DVERK - based on the Runge-Kutta method, and recommended for cases
where high accuracy is not required and where the derivatives can
be simply calculated.

DGEAR - based on the predictor-corrector method. Although it results in
poor accuracy it is preferable to DVERK when the calculetion of
the derivatives is difficult and hence expensive.

DREBS - based on the extrapolation method. Preferable when high
accuracies are required and when the derivatives can be
calculated in a relatively simple and inexpensive way.

The DREBS code was adopted in the present study because it is the
most accurate one. This code performs a triple check of the obtained error
between each two extrapolation steps. Since the DREBS code is limited to
the case where each derivative is independent of the other derivatives the
governing equations need to be rearranged. The rearrangement of the
governing equations (1) to (7) results in;

Fpi us
2 Y F V - ————
de ) (Opl DiYy UZ‘RTQ] (s)
dx =

Ru?2
F’Q“{CP T u2-RT,
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dlg
qu  =Foi ~ PR~
z (16)
dx U-RTg
S H—
__df_- dTq Tq‘ du
dx'p‘JR[ dx u dx] (7
d d
2Py __Pg_Cu
dx = u dx ' (18)
dTgi Qpi
19
dx Ci ppi ¥ (19)
dvi Fpi ‘
= 20
dx Ppi ¥i (20)
Oppi Ppi  4vj
dax ~— v dx (21)

Note that although equations {(15) to {(21) do not reflect the dependence of
the gas specific heat capacity on its temperature since s space gradient of
Cp does not appear, the value of Cp was calculated at any position x

according to the temperature of that position. This procedure assumes that
the space gradient of Cp is neglectable.

Initial _Conditions

As mentioned earlier the properties of the solid phases do not change
when they pass through the normal shock wave. Thus, the solid particles
velocity, vi, temperature Ty, and spatial density, ppi, immedistely behind
the shock front remain identical to their appropriate values ahead of the
shock front, ie,

(vin = (vida
(Tpi)) = (Tpi)D
(ppit1 = (ppido

Furthermore, the multi-phase suspension is assumed to be in
thermodynamic 6&nd kinematic equilibrium ahead of the shock firont,
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therefore; (vi)g = up and (Tpida = To and (ppido = nipgy where nj is the
loading ratio of the i-th solid phase.

The properties of the gas, on the other hand, change &lmost
discontinuously across the shock wave. The gas properties; immediately

behind the shock front, cap simply be calculated from the normal shock jump
conditions, i.e.;

2
Py Ay

= - ?
P T (23
2
Pg (Y*‘)H
L. 5 (24)
Pag (¥~ M2
vl 2 2.2
0 2(y-1)
Mg * 21
My = — (26)
2y M2- 1
y-1 0
uy = M‘ \' S(RTgl (27)

Mg and My in the above equations are the flow Mach numbers immediately
ghead and behind the shock front.

The Final Conditions

As mentioned the extent of the relaxation zone in the case of a dusty
gas is infinitely long for the equilibrium values e&re epproached
asymptotically. However, & shown by Gottlieb & Coskunses (1985) the
suspension equilibrium properties at infinity can be calculated very simply
by using the above listed normal shock wave equations [(23) to (27)] end
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replacing y by y and R by R. In this approach the multi-phase suspension 1s
assumed to be a single phase gas having new values for y and R. Based on

Gottlieb & Coskunses (1985), the relations for y and R are as follows:

IniCi + (1-Zn;)Cp

, Y= 3G + (1-3n)Cv (26)
where
Ppi
1 (30)
L Ippi * Py

Note that in many papers the loading ratio is defined as n: = ppi/pg. Thus,

the two different definitions can be related by the following expression:
*
N

= (31
o, * 1

Ui

(It is clear from these relations that if the total loading ratio Zn, and heat
capacity Ci are constant, then y and R &re constent and hence the
equilibrium properties at the end of the relaxation zone are identical.) These
new values, i.e, y and R yield a new speed of sound 8, which satisfies;

: 80« a0 = (yRTg,)1/2

. Thus the flow Mach number ahead of the shock wave becomes Mg > M. By
replacing y, R and Mg in equations (23) to (27) with y , R and Mg, one can
calculate the equilibrium properties of the suspension at infinity.

The knowledge of the suspension properties atl infinity, ie, the
equilibrium final conditions can serve &s an excellent means of checking the
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reliability of the numerical results since they should be approached
asymptotically.

Since the equilibrium conditions at infinity are known spriori the
integration was terminated when the suspension properties came as close
as 28 of their corresponding equilibrium value. The distance where the
velocities reached this condition is called the kinematic relaxation length,
ly, and the distance where the temperatures reached this condition is called
the thermal relaxation length, ly. These two relaxation lengths are in
genera) different.

Physical Properties of the Various Phases

The gaseous phase was chosen to be nitrogen. Yum, Weissman & Mason
(1962) have calculated the transport properties of nitrogen and presented
their results in a tabular form for both the dynamic viscosity, pg, and the
thermal conductivity, kg. A least square polynomial fit to their results
yields the following expressions for kg and yg;

2

kglW/(mK)] = 1.386 X102+ 5311 x 10-5Tg - 9.822x 10-10 P

and
palKgm/(m sec)] = 0.7226 x 10°5 + 2.768 X 10-8 Tg-0.5933 x 10-12 Tg

The expression for the specific heat capacity at constant pressure, Cp, was
adopted frorm Sontag & Yan-wylen (1971);

Cplm2/(sec2 K)] = 1.3686 x 103 - 2.786 x 105 T’q‘ +5.1741 x 107 T‘q2

In the above expression Tg is in degree K.

Five solid phases were chosen in order to numerically simulate the
effect of non-uniformities of the solid particles on the flow field. Thus, in
equations (18) and (20) n = 5 and each of equations (15) to (17) represents
five equations withi=1,2, .., 5.

Each solid phase is identified by three parameters. The diameter of
its particles, Dj, the heat capacity of its perticles Cj and their meterisl
density, oj.




—————f
13

Nine different cases (for Mg = 1.5) were investigated. They &re shown
in tables |1 to 3. Intable 1 all the five solid phases have the same material
density a1 = 02 =.. = 05 = 0 and heat capacity Cy = C2 = .. = C5 = C but
different particle diameters Dy = Spym, D2 = 7.5um, D3 = 10pm, Dg = 25um
and D5 = SOpm. The seven cases differ in the loading ratios of the various
solid phases. .

The partial loading ratios nj are chosen in such & way that the total

S
loading ratics for each case, 1.8, nota] = Eqi equals always 0.2.
- 1 '

Thus, for all the seven cases, the suspension properties should reach
the sarne equilibrium values at the end of the relaxation zone.

In the case shown in table 2 also for Mg = 1.5, the five solid phases
have identical particle diameters, D = 5S0pm &nd material densities, o =
1500 Kgm/m3, but different heat capacities Cy = 100, C2 = 500, C3 = 1000,
C4=5,000 and Cs = 10000 J/(Kgm K). The loading ratio of each solid phase
isn = 0.04 and therefore the total loading ratio is again 0.2.

The last case is shown in tabie 3. Here all the solid phases have
identical particle diameters, D = 10pm and heat capacities, C = 1000
J/(Kgm K), but different material densities, o1 = 1000, o2 = 1250, o3 =
1500, o4 = 1750 and o5 = 2000 Kgm/m3. The incident shock wave Mach
numoer is again Mg = 1.5 and the total loading ratio is 0.2 (nj = 0.04 for each
solid phase).

Numerical Results and Discussions
Distribution of the Diameter of the Dust Particles
Figures 2 to 7 illustrate the flow field properties which are

developed behind & normal shock wave with Mg = 1.5 in cases | to 6,

respectively (see table 1). Each of these six figures contains six velocity

and six temperature profiles (one for the gaseous phase labelled with “G”

and five for each of the five solid phases labelled “1" to “S" in accordance
) with table 1) and one pressure profile. The dashed lines in the right hand

sides of figures 2 to 7 indicate the equilibrium values at infinity, which

should be approached asymptotically. As mentioned earlier these values are

calculated apriori.
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It is clear from figures 2 to 7 that the larger the particle diameter
is, the longer it takes for it to reach a dynamic equilibrium. This is due to
the fact that the inertial forces depend on D? while the drag forces are

roughly proportional to Df . Thus the effectiveness of the drag forces in

slowing down the solid particles decreases as the diameter of the solid
particles increases. The solid phase with the larger particles is also the
last to reach thermal equilibrium with the gaseous phase. This is not
surprising since the larger the solid particle is, the slower will be its
temperature rise. Thus the solid phase with the smallest particles (D =
Spm) reaches a thermal equilibrium with the gaseous phase within few
centirneters while it takes tens of centimeters for the solid phase with the
largest particles.

The velocity, temperature and pressure profiles of the gaseous phase
for cases 1 to 6 are shown in figure 8. (tis cleariy seen in figure 8 that &ll
the six cases approach asymptotically, identical equilibrium properties at
infinity. This fact should not be surprising for the total loading ratio in 8}
the six cases is iy = 0.2 and the heat capacity of the solid particles is the
same. Although the equilibrium properties are identical, the flow
properties inside the relaxation zone do depend on the size distribution of
the pearticles of each solid phase. The dependence is minimal for the gas
temperature where the six profiles merge intc an almost one curve, and it is
maximal for the suspension pressure. The suspension pressure increases
very sharply when it consists mainly of small particles (case S) and it
increases very slowly when it consists mainly of large particles {(case 6).
Thus it can be concluded that increasing the mass fraction of the small
solid particles in the suspension results in 8 faster rise in lhe suspension
pressure. Similarly, the suspension with the largest amount of small
particles results in the sharpest decrease in the gaseous phase velocity. The
suspension with the largest amount of large particles, experiences the
smallest decrease in the gaseous phase velocity. It is interesting to note
that the gaseous phase velocity falls from its velue immediately behind the
shock front in spite of the fact that it exchanges momentum with the solid
phases which have much higher post shock velocities. The reason for this
peculiar behaviour lies in the fact thet the dust presence causes a very
large increase in the density of the gaseous phase. This in turn results in &
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large decrease in the gaseous phase velocity since the flow field is one
dimensional and pgu must remain constant.

The general shapes of the various property profiles, for the six cases
of multi-solid-phases, are similar to those obtained when’ the suspension
contains a single-solid-phase only, i.e., case 7 in table 1, whose sclution is
seen in figure 9. ‘Since for this case n = 0.2 too, the equilibrium properties
at infinity are identical to those shown in figures 2 to 7.

The thermal and kinematic relaxation lengths for cases 1 to 7 are
given in table 4. The earlier remark that the temperature of the gaseous
phase is almost unaffected by the size distribution of the particles of the
solid phases (see figure 8, where all the temperature profiles merge into &
single line at a very short distance behind the shock fronts) is further
supported by the fact that the thermal relaxation length It is almost the
same for the six multi-phase cases.

The difference between the kinematic relaxation lengths, ly, is much
larger. The two extreme cases, S & 6, differ by about 8.3%. Note that the
difference in the thermal relaxation length between the two extreme cases
is only about 1.5%.

However, the difference in both the thermal and kinematic relaxation
lengths between the multi-solid phases (case 1 to 6) and the single-solid
phase (case 7) is enormous. Both It and ly are more than 90% smaller when
the suspension contains a single solid phase with D = 10pm. [t is obvious
that the enormous increase in both 17 and ly when the suspension contains a
size distributed solid phase arises from the presence of the large particles,
D = SOpm, in the six cases. This is due to the fact that the large particles
slow down and heat up very slowly in comparison with smaller particles.
Thus it can be concluded that the extent of the relaxation zone 1s
determined colely by the solid particle having the largest dismeter.

Distribution of the Heat Capacity of the Dust Particles

Case 8 (table 2) in which the solid particles of the five phases have
identical diameters D = S0upm and material density ¢ = 1500 Kgm/m3 but
different heat capacities, C, were solved. The results are shown in figure
10 for Mg = 1.5.

It is evident from figure 10 thal in spite of the fact that the hest
capacity, C, of each of the solid pheses is different, they all have the same
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velocity and pressure inside the relaxation zone. Thus, the heat capacity
has no affect on the velocities of the solid particles and the gaseous phases
and does not affect the suspension pressure. However, the five solid phases
have different temperature profiles. The temperature of the solid particles
with the highest value of C experiences the slowest increase. For the
smallest value of C the temperature rise of the solid particles is extremely
sharp. It overshoots the temperature of the gaseous phase before it drops
down to the equilibrium vealue at infinity.

The thermal and kinematic relaxation lengths, Iy and ly, are also
- shown in table 4 for this case (case 8). The large values for IT arise from
the tact that it takes a long time for the solid phase with the largest heat
capacity to reach equilibrium with the gaseous phase because their
temperature rise is very slow. The large values for the kinematic
relaxation length are due to the fact that the diameter of all the solid

particles was chosen to be D = SOpm for this case.

Distribution of the Material Density of the Dust Particles

Case 9 (table 3) in which the solid particles of the five phases have
identical diameters D = 10pm and heat capacities C = 1000 J''Kgm K) but
different material densities is shown in figure 11 for Mg = 1.5. Case 7
which has identical values of D and C, as well as the total loading ratics of
n = 0.2, but a constant value of 6 = 1500 Kgm/m3 is added to figure 11 in
dashed lines.

The solid lines in figure 11 indicate that the distribution in the solid
particles density results in a decrease in the gas pressure, temperature and
velocity gradients behind the shock front. The equilibriurn values, however,
at infinity are identical for the two cases. In addition it is evident from
figure (1 that the larger the material density of the dust particles is, the
slower its decay becomes. This is so because its inertia depends linearly on
the material density. Similarly, the larger the materiel density of the dust
is, the slower its temperature rise becomes, because it has a higher heat
- capacity. The effect of the distribution in the material density of the dust

particles on the thermal and kinematic relaxation lengths, 11 and ly,
respectively, can be seen by comparing cases 7 & 9 in table 4. For the
Mo = 1.5 case (7 & 9) both IT and ly increase by about 25%.
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Conclusions

The flow field which is developed behind & steady normal shock wave
in o dust~gas suspension has been solved numerically while accounting for
distributions of non-unifermities in the physical properties of the solid
phase. The mode) was ba<ed on a multi-phase system which consists of one
gaseous phase and five solid phases. The five solid phases differed from
each other by one physical property only, which was either the diameter of
the solid particles or their heat capacity or their materisal density.

For a fixed total loading ratio it was found that the gas temperature
profile downstream of the shock wave is practically independent of the
size distribution of the dust particles. This might also be a result of the
relatively small loading ratio which was used in the calculation.
Consequently, it should not necessarily hold for an arbitrary loading ratic.
The suspension pressure profile, however, is very sensitive to the size
distribution. The suspension pressure rises very sharply when the
suspension contains mostly small particles. Similarly the suspension with
the largest amount of small particles resulls in the sharpest decrease in
the velocity of the gaseous phase.

A distribution in the heat capacity of the solid particles resulted in a
minor effect on the velocity of the solid particles and practicaliy no effect
on the suspension pressure. The effect on the temperature of solid particles
yas much more pronounced. As expected, the particlies with the smaller heat
capacity were healed faster and their temperature reached that of the
gaseous phase earlier than those having larger heal capacities.

A distribution in the material density of the solid particles resulted
in different velocity and temperature profiles for each of the five solid
phases, and a slower rise in the suspension pressure.
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Figure Captions
Figure 1:  Shock wave structure in pure and dusty gases

Figure 2:  Flow field for case | of table |
Figure 3:  Flow field for case 2 of table |
Figure 4. Flow field for case 3 of table |
) Figure 5: Flow field for case 4 of table |
Figure 6: Flow field for case S of table |
Figure 7: Flow field for case 6 of table |
Figure 8.  Gas properties for cases | to 6
Figure 9:  Flow field for case 7 of table |
Figure 10:  Flow field for case 8 of table 2
Figure 11:  Flow field for case 9 of table 3
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Table 1: The bading ratios, 1), of the various size particles for
o = 1500 Kgmém?3 and C = 1000 J{Kgm K)

D; X 100 [m] Case Number
7.5 10 25 50 M;
2 3 | 5 1.5

004 004 004 004 0.04
003 004 006 004 003
006 005 004 003 0.02
002 003 004 005 008
0099 006 0.03 0.0! 0.001 .
0.001 0.01 003 005  0.09

A W NV -
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Table 2: The specific heat capacities, C, of the five various solid phases.
For all the solid phases
Mo=15,D=50x10-6m, o = 1500 Kgm/m3, n = 0.04

CilJd/(Kgm K}
1 2 3 4 S - Case Number
100 500 1000 5000 10000 8
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Table 3: The dust material densities, ¢j, of the five various solid phases.

For all the solid phases
Mp=15D=10x10-6m, C = 1000 J/(Kgm K), n = 0.04

silKgm/m3)
1 2 3 4 5 Case Number
- 1000 1200 1500 1750 2000 9
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Table 4: The thermal, 1T, and kinematic, 1y, relaxation lengths for the 9
casesinTables 1,2and 3

Initial Condition {- Case | Iylml | .lyIm]
in Table Number

1 1.91 383

2 1.91 380

3 1.0 3.75

| 4 1.92 3.90

5 1.89 3.72

6 192, . 4.05

7 | 013 0.31

2 8 37.18 10.4

3 g | 0.162 0.39
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